

Bergen Engines 베르겐 엔진 회사 소개서

South Korea

September, 2022

Langley Holdings 랭글리 홀딩스

Langley Holdings plc 는 전 세계적으로 운영되는 다분야 엔지니어링 및 산업 제조 기업으로 주로 전 세계 다양한 시장에 자본 장비 기술을 제공합니다.

전력 솔루션 사업

각 기업은 광범위한 고객 및 시장에 서비스를 제공합니다. 그들은 함께 시장에 공동으로 제품을 제공하면서 Langley의 지속 가능성 목표의 핵심인 빠르게 부상하는 마이크로 그리드 부문에 초점을 맞추고 있습니다.

A Langley Holdings Company

BERGEN ENGINES

Norway

Medium-speed 엔진 제조업체

MARELLI MOTORI

Italy

전기 모터, 발전기 및 AVR 제조업체

PILLER

Germany

미션 크리티컬 UPS 시스템 제조업체

비전

Bergen Engines는 육상 및 해상에서 중속 전력 솔루션 분야를 세계적으로 선도하는 기업입니다.

베르겐 엔진 역사

1990s

Pre 1960s

1855: Bergen Mekaniske

1970-80s

2000s

1855: Bergen Mekaniske Verksted(BMV) 조선소 설립

1943: Bergen Diesel은 엔진 제조사로 설립

1946: Bergen Mekaniske Verksted(BMV)에서 첫 번째 엔진 납품

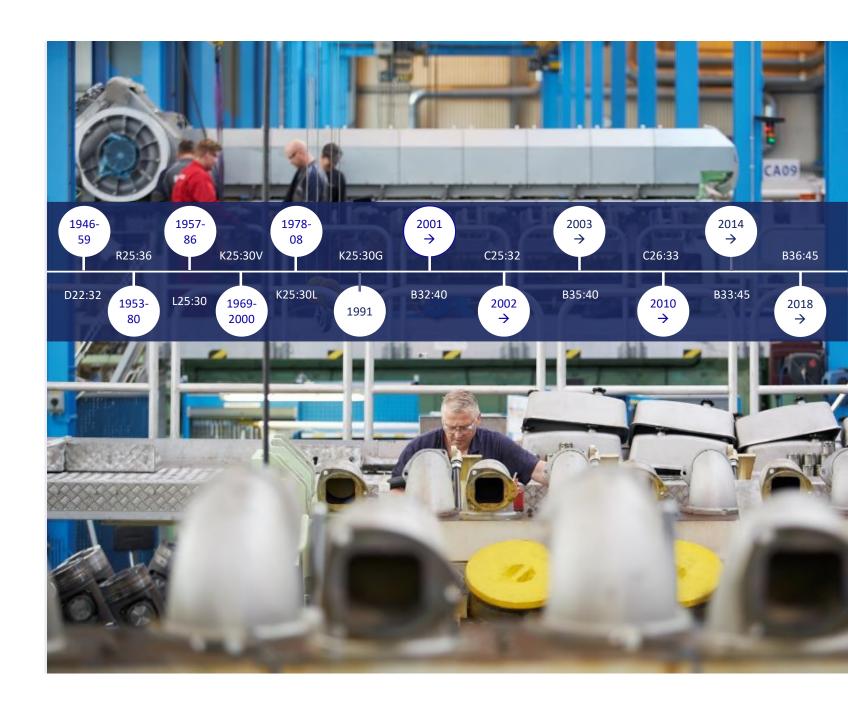
1963: 최초의 HFO 엔진 납품

1971: Hordvikneset에 새공장 설립

1985: 조선소와 엔진 공장 분리, Bergen Diesels이 Ulstein에 인수됨 1991: 최초의 린번 가스 엔진 납품

1999: Vickers에 인수된 후 Rolls-Royce에 인수됨 2014: B3X:45 해양 시장을 위한 새로운 엔진 플랫폼 출시

2018: 육지 시장을 위한 새로운 엔진 플랫폼 출시



2022: Bergen Engines이 Langley Holdings에 인수됨

레거시로 지속적인 엔진 개발

글로벌 설치 용량

선박

약 3000개의 엔진이 작동 중

육지 적용사례

최대 200MWe 이상의 출력이 가능한 완전히 설계된 발전소 에 장치당 1,400~12,000kW의 전력을 공급하는 세트 생성

A Langley Holdings Company

Power Generation

Baseload Grid support Peaking Microgrids Stand-by

CHP

District heating Industries Greenhouses Combined cycles Tri-generation

Oil & Gas

Power generation Compressor drives Pump drives

Non-confidential © 2022 Bergen Engines Not Subject to Export Control

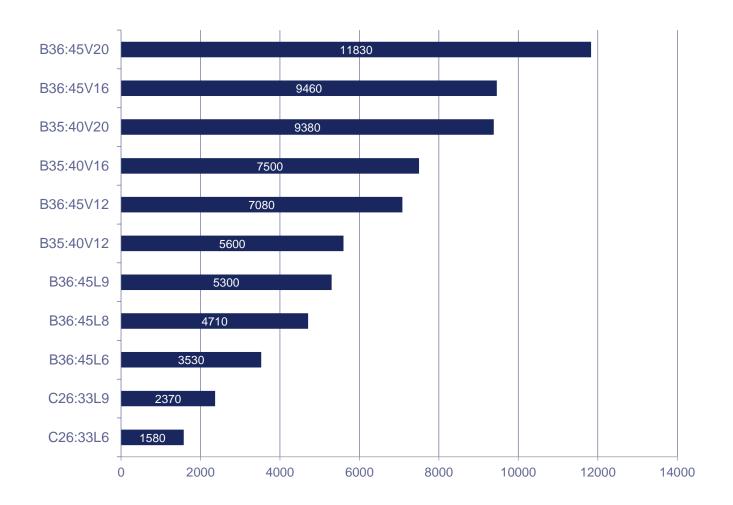
해상 적용 사례

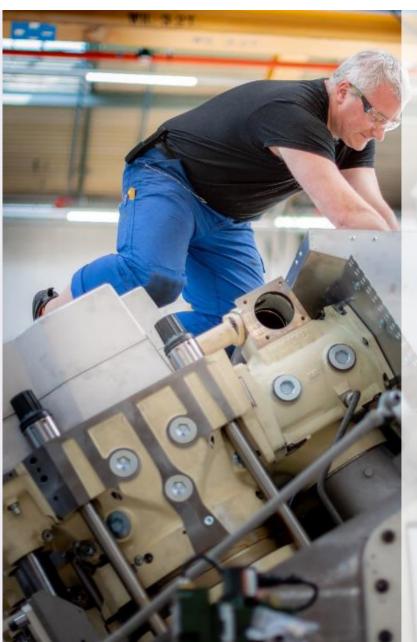


제품 범위

최대 50% 업계 최고의 효율성

매우 낮은 연료 소비 및 배출




전기 출력 GAS ENGINES

천연 가스 이점

세계적 수준의 효율성

50% 까지의 전기적 효율성

작은 설치 공간, 높은 전력 밀도

15%

까지 낮출 수 있음

장기간 부하

단일 단계 터보차징 - 낮은 유지보수 비용

빠른 시작 기능으로 **높은 유연성**

낮은 배출량 및 CO2 차지

신뢰할 수 있고 입증 된 기술

연료 유연성 천연 가스, 생물학적 가스 및 기타 가스

첨단 **디지털** 연결

ENGINES ON LAND. AT SEA.

B36:45 엔진 시리즈 전력 범위 3-12 MW

전체 B36:45 엔진 시리즈

B36:45L6

B36:45L8

B36:45L9

B36:45V12

B36:45V16

B36:4V20

무게: 67000 kg

El. 출력: 3520 kW

El. 효율성: 48.5%

연료: 천연 가스

RPM: 750

무게: 87500 kg

El. 출력: 4700 kW

El. 효율성: 48.7%

연료: 천연 가스

RPM: 750

무게: 88000 kg

El. 출력: 5290 kW

El. 효율성: 48.9%

연료: 천연 가스

RPM: 750

무게: 10000 kg

El. 출력: 7090 kW

El. 효율성: 49%

연료: 천연 가스

RPM: 750

무게: 150000 kg

El. 출력: 9470 kW

El. 효율성: 49.5%

연료: 천연 가스

RPM: 750

무게: 170000 kg

El. 출력: 11830 kW

El. 효율성: 50%

연료: 천연 가스

RPM: 750

Bore: 360 mm Stroke: 450 mm

Data in accordance with ISO 3046-1 (ICFN). Reference fuel gas with a lower heating value of 36MJ7nm3, methane number >80.

B36:45V

- 업계 최고의 효율성 수준
- CHP로 93% 이상의 효율성 제공
- 시작부터 최대 부하까지 300초 내에 도달
- 3.5MWe 30MWe 프로젝트를 위한 최적의 선택
- 빠른 응답과 무제한 시작/정지로 간헐적인 재생 에너지의 균형을 맞추는 데 이상적

A Langley Holdings Company

B36:45V20

50%

el. 효율성

20 기통 11.8 MWe

B36:45V16

49.5% 16 기통 9.5 MWe

el. 효율성

B36:45V12

49%

el. 효율성

12 기통 7 MWe

B36:45L

- 업계 최고의 효율성 수준
- CHP로 93% 이상의 효율성 제공
- 시작부터 최대 부하까지 300초 내에 도달
- 3.5MWe 30MWe 프로젝트를 위한 최적의 선택
- 빠른 응답과 무제한 시작/정지로 간헐적인 재생 에너지의 균형을 맞추는 데 이상적

B36:45L9

48.9% 9기통 5.3 MWe el. 효율성

B36:45L8

48.7% 8기통 4.7 MWe

el. 효율성

el. 효율성

B36:45L6

48.5% 6기통 3.5 MWe

B36:45L

- 업계 최고의 효율성 수준
- CHP로 93% 이상의 효율성 제공
- 시작부터 최대 부하까지 300초 내에 도달
- 3.5MWe 30MWe 프로젝트를 위한 최적의 선택
- 빠른 응답과 무제한 시작/정지로 간헐적인 재생 에너지의 균형을 맞추는 데 이상적

A Langley Holdings Company

B36:45L9

48.9%

48.9% 열효율

5.3 MWe

4.7 MWe

el. 효율성

B36:45L8

48.7% 47.1%

el. 효율성

열효율

B36:45L6

48.5%

el. 효율성

45.2%

열효율

3.5 MWe

베르겐 가스 엔진

1992년 덴마크 공장에 납품한 최초의 가스 엔진은 여전히 가동 중임 900

이상의 Medium speed 가스 엔진 납품

최대

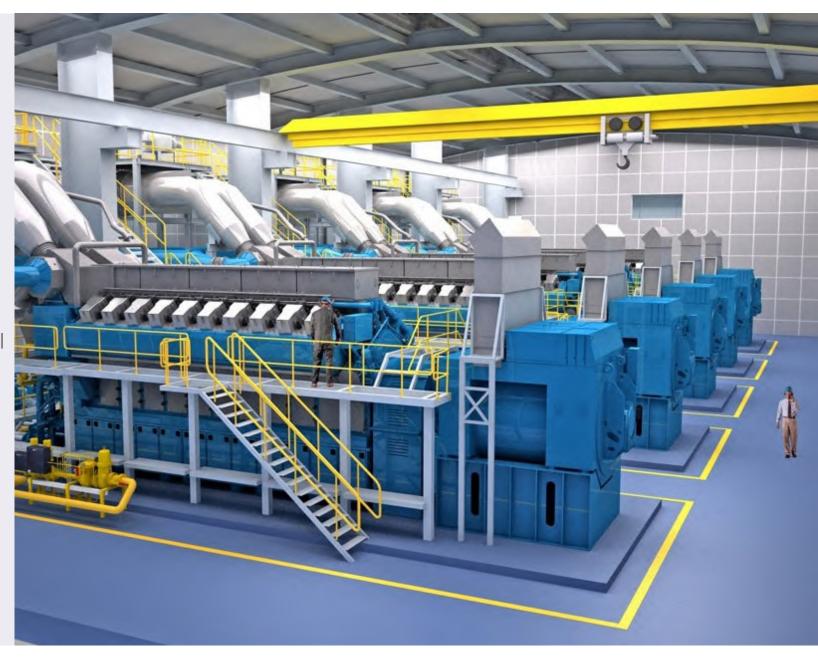
50%

효율성 - 단순 주기

 40°

이상의 운영 시간 달성

93%


효율성 - CHP 시스템

B36:45 천연 가스

- 세계 최고 수준의 효율성
- 낮은 라이프사이클 비용
- 기통 당 600kW의 기계적 출력
- 매우 낮은 배출량
- 단순하고 모듈형이며 견고한 설계
- 뛰어난 부하 응답

고객에 의해 정의됨

A Langley Holdings Company

B36:45 천연 가스

- 최대 50%의 전기 효율성
- 맞춤형 시스템 솔루션
- 우수한 부분부하 효율 및 성능
- 우수한 부하 응답성
- 최대 부하까지 2분내 도달하는 빠른 시작 기능
- 그리드 밸런싱을 위한 시작/정지 횟수 제한 없음
- 기통(실린더)당 600kW
- 매우 낮은 배출량
- 단순하고 모듈형이며 견고한 설계

B36:45 Start-up 시간

Start-up 시간은 시작부터 명령이 100% 전력 출력에 도달할 때까지의 시간으로 이해해야 합니다.

Start-up time	2 min	5 min	9 min
윤활유 (엔진 입구)	60 °C	50 °C	40 °C
HT 수(水) (엔진 출구)	70 °C	70 °C	60 °C
배기관 퍼징	주기적으로	주기적으로	주기적으로
마지막 실행 이후 시간*	7 days	7 days	7 days

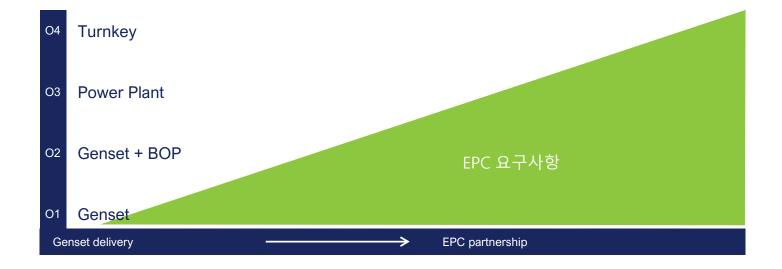
*연소실의 환기는 정지 상태에서 장기간 후에 시동하기 전에 수행해야 함.

작동 모드

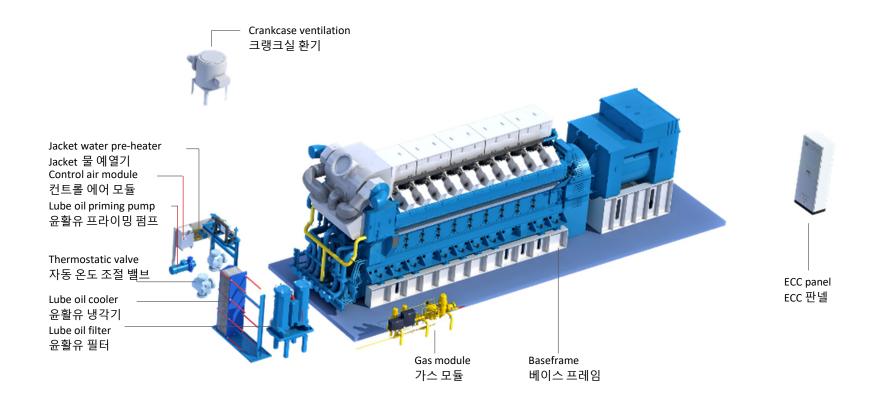
29 MW 발전소의 단계별 건설 3 x BV20 레이아웃

유연한 공급범위

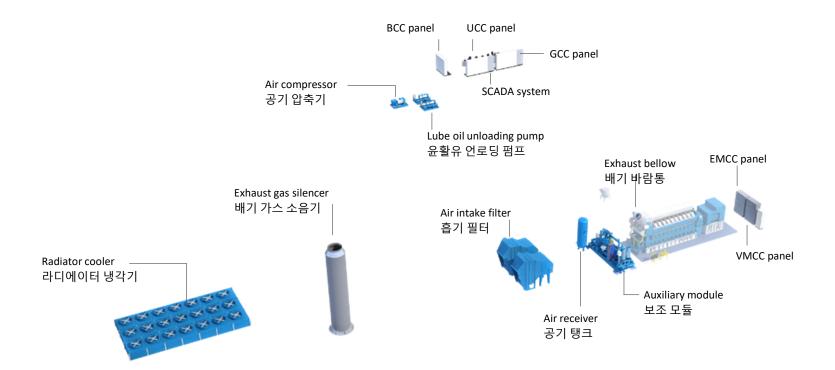
발전소 프로젝트마다 다르고 고객 마다 요구 사항이 다르므로 그에 따라 납품 범위를 조정함


우리는 모든 발전 및 전력 관리 전문 지식을 보유하고 있기 때문에 고객이 원하는 수준까지 광범위하게 지원 가능함.

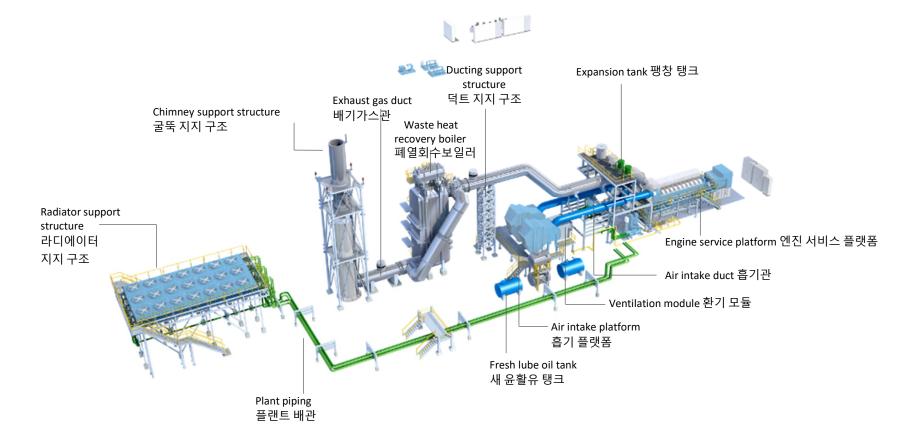
지역 비즈니스의 경우 종종 EPC 프로젝트 납품의 일환으로 가장 적합하기 때문에 최적의 작업 분할 을 찾을 수 있도록 협업을 환영함.



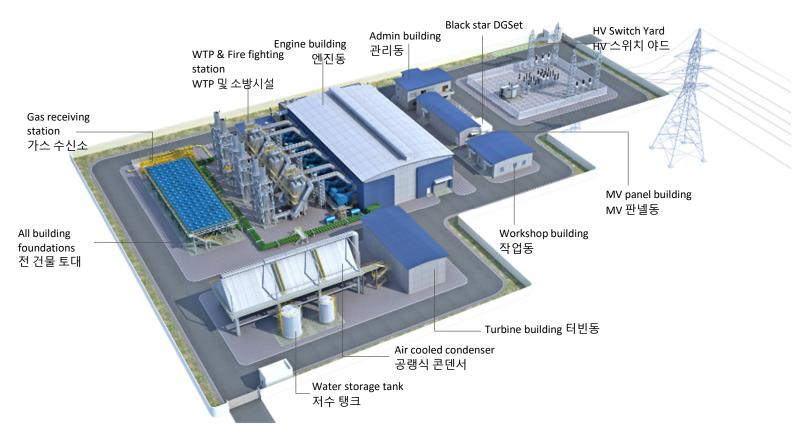
유연한 공급범위



일반적인 O1 scope



일반적인 O2 scope



일반적인 O1+O2+O3 scope – EPC 파트너와 협력

O4까지 발전소 완성 – EPC 파트너와 협력

미래 연료 및 응용(애플리케이션)

Hydrogen 수소

탄소 없음

재생 에너지로 생산하는 데 에너지 소비가 가장 적음

> 폭발성이 높은 Volumous 재료 호환성

Ammonia 암모니아

탄소 없음 (수소 대비) 콤팩트 (수소 대비) 취급이 용이함

해상에 설립

강한 독성 열악한 연소 특성 재료 호환성

Methanol 메탄올


취급이 용이함 우수한 ICE 연료 높은 기술 준비 수준

탄소 필요 (재생 에너지로부터) 생산에 소비되는 에너지

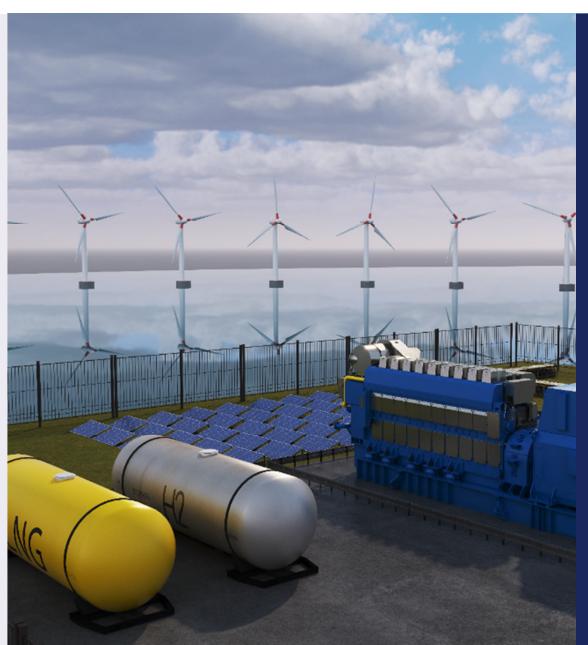
AMAZE 타임라인

연소 모델링 (Sintef) 실험 연구 (NTNU)

엔진 컨셉 연구 (BEAS)

연료 분사기 개발 (Woodward and BEAS)

실험실 엔진 테스트 (SINTEF and BEAS)


2022 2023 2024

원활한 수소 전환 보장

에너지 전환에는 시간이 소요되며 지역, 국가 및 도시 에 따라 다른 속도로 발생할 것임.

A Langley Holdings Company

엔진 기반 발전소는 장기 투자임 → 30년 이상의 안정적인 전력

오늘날 선택된 기계는 사용 가능한 최소 GHG 집약 연료로 작동할 수 있어야 하며, 사용 가능 하게 되면 H_2 로 전환할 수 있어야 함.

왜 H₂를 발전용 으로 사용하는가?

재생 에너지가 전기를 직접 생산할 수 있다면, 전기를 생산하기 위해 친환경 H_2 에서 작동하는 엔진이 왜 필요한가?

A Langley Holdings Company

미래의 에너지 조합에서 H2 엔진 작동의 이점

→ 재생 가능 에너지는 간헐적이며 균형을 유지해야 함

- 재생 가능 에너지(RES) 및 원자력의 잉여 전력을 사용하여 H₂(power-tox) 생산 가능
- RES에서 나오는 전기가 사용자로부터 멀리 떨어진 곳에서 생산될 경우, H₂로 사용자에게 전달되고 엔 진에 의해 동력으로 변환될 수 있음
- 연료로서 HH₂와 천연가스의 혼합은 탄소 배출 제로화를 향한 첫 번째 단계가 될 수 있음
- 천연 가스 파이프라인에서 H₂가 혼합될 수 있음

H₂의 과제

왕복 엔진에서 H₂를 사용하는 과제

H₂의 안전성은 모든 애플리케이션의 관심사임

- 낮은 점화 에너지
- 높은 화염 속도 올바르게 취급하지 않을 경우 폭발 위험이 높음

엔진의 과제는 다음과 같음

- 폭발/노킹 방지를 위한 연소 제어
- 엔진 재료에 대한 잠재적 영향(높은 비율의 H₂ 포함)

애프터마켓 서비스

유연한 서비스 모델 제공

- 우리는 서비스 수명 내내 고객의 편에서 지원할 것 을 약속합니다.
- *장기 서비스 계약(LTSA)

운영 함대의 80% 이상이 LTSA* 에 의해 보호됨

LTSA*는 예측 가능성을 제공하고 공장의 가용성과 신뢰성을 극대화함

모든 LTSA*는 고객의 개별 요구 사항 에 맞게 독자적으로 맞춤화됨

유연한 서비스 모델 제공

발전소 유지보수

유지 관리 일정을 준수하면 엔진 가용성이 최대 98%까지 높아짐.

서비스 주기는 고정되어 있으며 빈번한 시작/정지의 영향을 받지 않음.

주요 서비스는 미리 정의되어 있으며 외부 요인의 영향을 받지 않음.

LTSA의 이점

(LTSA: 장기 서비스 계약)

유럽, 중동 및 아프리카에서는 90% 이상의 고객이 LTSA를 통해 서비스를 받고 있습니다.

최적화된 엔진 가용성 및 신뢰성

제품 수명 전반에 걸쳐 예측가능한 유지보수 비용

→ 운영시간당 고정된 가격

공장의 중요 예비품 보관(비상 재고) → 예기치 않은 이벤트 발생 시 다운타임 감소

수명 주기 전반에 걸쳐 고도로 숙련된 서비스 엔지니어의 기술 지원

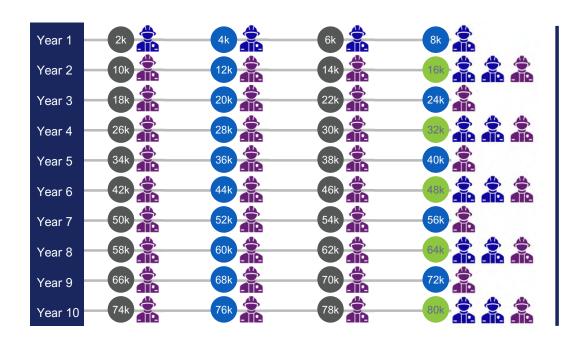
LTSA의 이점

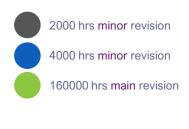
(LTSA: 장기 서비스 계약)

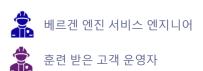
높은 공장 가용성을 보장하는 전문적인 서비스

플랜트 운영자의 현장 교육

소규모 사고가 확대될 위험 감소


서비스 엔지니어에 의한 정기 유지 보수 및 엔진 튜닝




잘 튜닝되고 정비된 엔진은 고효율, 낮은 배기 가스 배출 및 마모 감소를 유지함

인라인 엔진(BL6, BL8, BL9)에 대한 10년 감독 서비스 계약 예시

감독(Supervisory) 서비스 계약

- 비용 절감을 위해 특정 프로젝트에 사용 가능
- 운영자 교육 및 신뢰를 기반으로 한 유연한 LTSA
- 운영자의 기술과 능력에 맞게 세심한 맞춤화
- 운영자 교육을 위한 첫 번째 마이너 리비전에 대한 지원 제공
- 주요 수정 사항은 항상 Bergen Engine 서비스 엔지니어가 주도

현지에서의 장기간 숙련된 작업

플랜트 안정성과 효율성을 보장하고 장비 마모를 줄이기 위해 전문적으로 훈련된 작업자를 대신할 수 없습니다.

- **트레이닝(Training)은** 대부분의 장기 서비스 계약의 핵심 요소임
- 최적의 유지보수 및 모니터링 루틴을 수립하여 궁극적으로 신뢰성과 가용성을 극대화할 수 있도록 지원(Assistance)
- 교육 패키지는 필요한 **시스템 이해(system** understanding)와 기술을 제공하여 사소한 사고로 인해 발생하는 주요 문제의 위험을 줄임
- 일일/주간/월간 서비스 활동에 대한 플랜트 운영자의 **현장 교육(On-site training)**
- Bergen의 **Center of Excellence**에서의 교육

2022 설치 기반

인도

A Langley Holdings Company

엔진 수: 42

공장 수: 22 Total MWe: 200

- New Dehli office
- Major cities

K25:30

- **B**35:40
- **9** B36:45 NIL

발전소 인도 LNG 터미널

Owner Black & Veatch / IOCL Place Ennore, India
Genset 2 + 1 x B35:40V20AG2

Output 18 MWe Fuel Natural gas

LTSA S1

이것은 가스 터빈 대신 왕복 엔진 기반 동력을 사용하는 최초의 LNG 터미널(5.0 MMTPA 용량)입니다. 3개의 장치는 다양한 시동 부하 및 기본 부하 요구사항을 충족하는 2개의 엔진과 연중무휴 24x7가용성을 위한 대기 장치인 1개의 엔진으로 최고의효율성과 플랜트 유연성을 보장합니다. Bergen Engines에서 관리하는 LTSA(장기 서비스 계약)는소유자에게 최적의 성능과 안심을 보장합니다.

인도 LNG 터미널

전체 턴키 프로젝트

Owner DLTPL- Adani Group &

Total Group, France

Place Dhamra, India

Genset 2 + 1 x B35:40V20AG2

Output 28 MWe Fuel Natural gas

LTSA S4

Dhamra LNG Terminal Private Limited(DLTPL)는 Adani Group과 TOTAL France의 합작 투자로 인도오디샤 주 Dhamra에 LNG 재기화 터미널을 건설 중입니다. 초기에 터미널 용량은 5 MMTPA이며 이후에는 10 MMTPA로 확장될 예정입니다. BEIPL은 최대52미터 깊이의 말뚝공사를 포함하여 턴키 방식으로이 프로젝트를 수행했습니다. 10년간의 장기 서비스계약(LTSA – O4 기준)은 Bergen Engine에 의해 관리되며 소유자에게 최적의 성능과 안심을 보장합니다.

인도네시아

엔진 수: 25

공장 수: 5

218

Total MWe:

Major cities

K25:30 NIL

B35:40

9 B36:45 NIL

미얀마

ENGINES
ON LAND. AT SEA.

A Langley Holdings Company

엔진 수: 4 공장 수: 1 Total MWe: 37

Major cities

K25:30

B35:40

Q B36:45

미얀마 베이스로드

Owner
Place
Genset
Output
Fuel
LTSA

Zeya & Associates Yangon, Myanmar 3 x B35:40V20 AG2 28 MWe Natural gas S2+

3개의 중속 Bergen 엔진은 대표적인 대도시 Yangon 바로 외곽에 위치한 독립 발전소의 핵심입니다. 사전 제작 플랜트 개념은 현장에서의 설치 노력을 크게 줄였습니다. B35:40 장치는 Yangon 공공 그리드에 28MW의 안정적인 전력을 제공하며 장기 서비스 계약으로 가용성이 보장됩니다.

중동

엔진 수: 15 공장 수: 7

Total MWe: 98

Major cities

K25:30

B35:40

Q B36:45

이탈리아

엔진 수: 94 공장 수: 54 Total MWe: 420

- **Q** Genova office
- Cities

K25:30

B35:40

Q B36:45

이베리카

엔진 수: 116 공장 수: 44 Total MWe: 544

- office
- Major cities

K25:30

- **B**35:40
- **Q** B36:45

방글라데시

A Langley Holdings Company

엔진 수: 152

공장 수: 26 Total MWe: 1078.8

• office

Major cities

K25:30

B35:40

B36:45 NIL

B32:40

러시아

St Petersburg Moscow

엔진 수: 53

공장 수: 6 Total MWe: 380

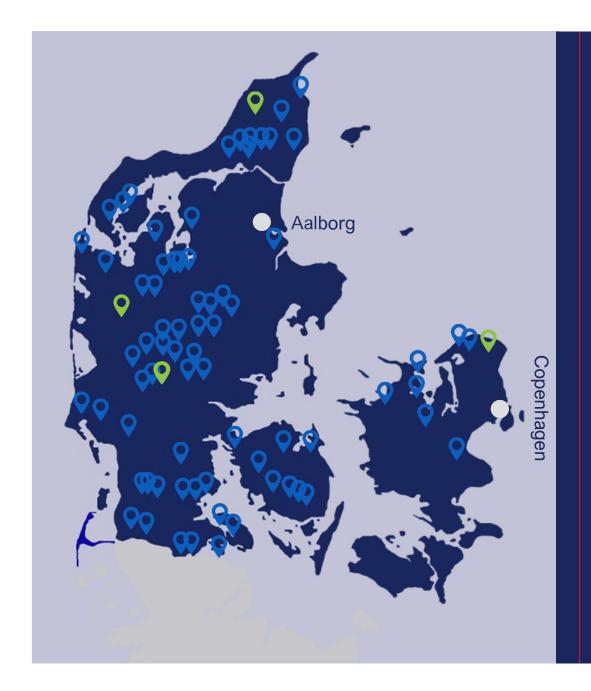
Major cities

K25:30

B35:40

Q B36:45

C25:33


Q B32:40

ENGINES ON LAND. AT SEA.

덴마크

A Langley Holdings Company

엔진 수: 84

공장 수: 53 Total MWe: 257

Office

Cities

K25:30

B35:40

Q B36:45

베네룩스

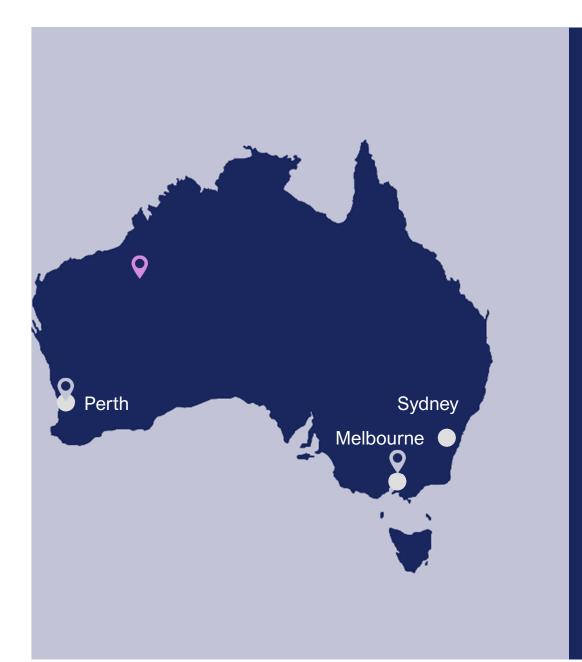
A Langley Holdings Company

엔진 수: 46

공장 수: 32

Total MWe: 148,4

Office


Major cities

K25:30

B35:40

Q B36:45

호주

엔진 수: 15

공장 수: 1 Total MWe: 175

Office/distributor

Major cities

K25:30

B35:40

B36:45

동유럽

E N G I N E S
ON LAND. AT SEA.

A Langley Holdings Company

엔진 수: 21

공장 수: 7

Total MWe: 185

Office

Major cities

K25:30

B35:40

Q B36:45

참조 프로젝트

가스 프로젝트 > 70 MWe

가스 프로젝트 < 70 MWe

감사합니다!

